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Building your executable

= Choosing your Compiler
« By default, you will be using PGl
* To change from PGI to GNU
" module swap PrgEnv-pgi PrgEnv-gnu
* To change from GNU to PGl
" module swap PrgEnv-gnu PrgEnv-pgi
 If you do not swap these modules you could link against the wrong
libraries!
= Using the Cray Compiler Wrappers
 Fortran: ftn <-target=catamount>
« C:cc <-target=catamount>
« C++:CC <-target=catamount>
* While using the mpi*** scripts may work, it is not recommended



PGl Compiler Options

Option help: -help <option>
* Must call PGI compiler directly for —help.

Listing file: -Mlist (sorry, not as nice as the X1E)

Additional compile-time information: -Minfo,-Mneginfo
« =[inline|ipal|loop|opt|stat|time|all]
-byteswapio: Swap byte-order for unformatted input/output

+ Useful when moving data between jaguar and phoenix

- Can be used file-by-file, if you want to read one endianness and
write the other

-r[4,8] —i[2,4,8]: Controls interpretation of real and integer

sizes.

« This may affect library compatibility.
« Use —-r8 with —default64 to get proper system libraries



PGI Optimization Flags

-00-4: Set optimization level, -O0 to -O4, default -O2

-fast: “Good” optimizations
* -0O2 -Munroll=c:1 -Mnoframe -Mire

-fastsse: “Good” SSE optimizations
- -fast -Mvect=sse -Mscalarsse -Mcache_align —Mflushz

* You should be striving for at least this level for future multi-core
processors

More Advanced Options

* -Mvect: Control automatic vector pipelining
« -Mipa: Enable Interprocedural Analysis

« -Mscalarsse: Generate scalar sse code with xmm registers; implies —
Mflushz (processor-level flush xmm to zero)

* -Munroll: Enable loop unrolling
* -Minline: Inline all functions that were extracted



If you must ./configure...

= Most configure scripts are confused by cross-compilers
= First thing to try:
e ./configure CC=pgcc F90=pgf90 MPICC=cc MPIF90=ftn

. May also support ~-with-cc= pgcc -with-mpicc=cc
. Iyou want to use CrayPAT, you'll need to edit the Makefile to the cray

wrappers
= Next try
e ./configure CC=pgcc F90=pgf90
. CC/lécrgﬁcros .make, if available, or the makefiles to change the compilers to

= Sed is your friend if you must do this.
*  Works well when there’s no MPI tests
= Neither of these will report an error when checking a libc call not
supported by catamount

" You may also be able to use a -~host=x86 64-unknown-linux-
gnu flag to force cross-compilation
* Many configure scripts die with an error when you do this.

=  Some configure scripts can be edited to launch tests with and
application launcher, but this is the best case, but extremely rare.



Running your job

= The local XT system does not have any interactive nodes,
you must use PBS

= Remember that for dual-core —-1size=(N/2) where N is
the total number of cores you wish to use.

= The XT application launcher is yod

« —-sz — The number of MPI processes
« -VN — States that you want to use dual core mode
- —SN — States that you want to use single core mode

= All of the node memory is available to you from one core

= You are charged by socket, not by core
- -small pages — Use small memory pages, rather than large

= Can significantly improve TLB misses
= Almost every code will benefit from using this flag
= Almost no code will be hurt by this



Program Execution: Useful Commands

gsub: submit a job to pbs

galter: Change the parameters of a submitted job
gstat: Show status of pbs batch jobs

gdel: Delete your job from the queue

xtshowmesh/xtshowcabs: Shows information about
compute and service partition processors and the jobs
running in each partition

showq: Like gstat, but with more information from the
scheduler

showstart: Estimates when your job will run
« Try ~larkin/scripts/myss.sh

showbf: Shows current backfill

checkjob: Get more information about a specific job
« This is attempt to tell you why your job isn’t running.



Useful MPI Environment Variables

= MPICH_ RANK REORDER METHOD
 Default: (0,4)(1,5)(2,6)(3,7)
- Setto1:(0,1)(2,3)(4,5)(6,7) **Most apps seem to like this**
- Setto 2:(0,7)(1,6)(2,5)(3,4)
« Set to 3: User defined mapping (see man mpi)

MPI COLL OPT ON

« Some MPI collectives could run faster

MPICH_FAST MEMCPY

* Improves the performance of memcpy between 2 nodes on the same
socket, especially for messages larger that 256K.

The MPI man page lists other more advanced variables to
tweak the performance.



Debugging Tools: totalview

Totalview is available on Jaguar
To use: module load totalview

Core file analysis
e $ tv7 a.out core

Launch from within interactive session

* S tv7 <tvopts> yod —a <yodopts> a.out <opts>

* Note: -a is actually a totalview option, not a yod option, which
signifies that all options following should be passed to yod.

Attach to running processes

« Launch totalview as above
* From within totalview, attach to your yod process.

Totalview Users’ Guide:
http://www.etnus.com/Documentation/index.php



Nodeinfo

= |f you don’t specify that you want just XT3 or XT4 you may
get a mix

= At the moment, there’s no way to figure out your node
breakdown after a run

= Before your run, you can use nodeinfo to get critical
information about your nodes

= Add the following to your PBS script
« yod -VN ~larkin/xt3/nodeinfo/nodeinfo
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The Basics

1.

3.

module load craypat
make clean
make

You must rebuild in order to ensure that the proper symbols are

retained during the build

pat build <-w —u —g <group>> exe <exe+pat>

nght)now tracing is the only option on XT (sampling coming very
soon

-u will trace all user functions

-g: rT)1pi, i0, and heap are useful choices (blas & lapack coming
soon

-T: more advanced, trace/don’t trace individual entry points
Original .o files must remain

. yod exe+pat

Run just like your normally do

pat_report whatever.xf

See man pat_report for details on options



Pat_Report

e

« ca+tsrc : callers w/ source numbers
» ct+src : calltree w/ source numbers
 loadbalance: load balancing information

 txt : default, text report
« ap2 : apprentice 2 input file (can be archived)
- xml : XML, can also be archived

= Default options are shown at the top of the report and
provide a good starting place

= See man pat_report for more options



Gathering Hardware counters

=  Build and instrument like before
= Setthe PAT_RT _HWPC environment variable

« 1-9 groups available or you can define specific counters
FP, LS, L1 Misses, & TLB Misses
L1 & L2 Data Accesses & Misses
L1 Accesses, Misses, & bandwidth
Floating Point Mix
Floating Point Mix (2)
Total cycles stalled
Total cycles stalled (2)
Instructions & Branches

9. Instruction cache
- See man hwpc for the complete list

= Rerun your executable
= Run pat_report as before
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The PAT API

= You can define specific regions within your code that you
would like to instrument

= Regions work just like functions

" |nclude pat header file
« C: #include <pat_api.h>
 FORTRAN: #include <pat_apif.n>

= pat_region_begin(1,”"Loop1”,ierr)

- Don'’t forget ierr if you're in FORTRAN, ierr is function return value in
C

* Region numbers must be unique, numbers can start at 1
= pat region_end(1,ierr)
= You can also turn profiling off/on with pat_profiling_state()
= See man pat_build for API information



Apprentice 2 (When Pictures speak louder than Words)

= Build, instrument, and run as before

= pat _report —f ap2 —o whatever.ap2 whatever.xf
= module load apprentice2

= app2 whatever.ap2

= Note: Apprentice2 input files are also a useful way to archive
your profile data and can be used as input to pat_report.



